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Enumerative properties of grid associahedra
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Abstract. Coxeter-Catalan combinatorics places familiar Catalan objects in the context
of Coxeter systems. Key examples include triangulations of a polygon, nonnesting
partitions, and noncrossing partitions. These objects can be interpreted respectively
as clusters of a cluster algebra, antichains in the root poset, and elements of a Cox-
eter group less than a fixed Coxeter element in the absolute order. In each case, the
number of objects in question has a simple formula that depends only on the (finite)
Coxeter system from which the objects are defined. A richer enumerative relation-
ship between these objects was conjectured by Chapoton and subsequently proved by
several authors. We present a new generalization of these Catalan objects as maximal
collections of nonkissing paths in the plane, canonical join representations of elements
in the Grid-Tamari order, and the shard intersection order of the Grid-Tamari order.
We prove that the nonkissing complex admits a particular fan realization from which
one can recover the other structures. We conjecture that this fan is the normal fan of a
polytope, called the grid associahedron. Furthermore, we prove that one of the identi-
ties among Coxeter-Catalan objects conjectured by Chapoton continues to hold in this
setting, and we conjecture that the other identities hold as well.

Résumé. La combinatoire Coxeter-Catalan place les objets catalans familiers dans le
contexte des systèmes Coxeter. Les exemples clés incluent les triangulations d’un poly-
gone, les partitions nonnesting et les partitions non croisées. Ces objets peuvent être
interprétés respectivement comme des grappes d’une algèbre de grappe, d’antichèques
dans le poset de racine et d’éléments d’un groupe de Coxeter inférieur à un élément
de Coxeter fixe dans l’ordre absolu. Dans chaque cas, le nombre d’objets en question a
une formule simple qui ne dépend que du système (fini) Coxeter à partir duquel les ob-
jets sont définis. Une relation énumérative plus riche entre ces objets a été conjecturée
par Chapoton et ensuite prouvée par plusieurs auteurs. Nous présentons une nouvelle
généralisation de ces objets catalans en tant que collections maximales de chemins non
kissing dans le plan, représentations canoniques d’éléments d’assemblage dans l’ordre
de Grid-Tamari et l’ordre d’intersection de shard de l’ordre Grid-Tamari. Nous prou-
vons que le complexe nonkissing admet une réalisation particulière du ventilateur à
partir de laquelle on peut récupérer les autres structures. Nous conjecturons que ce
ventilateur est le ventilateur normal d’un polytope, appelé l’associaèdre de grille. En
outre, nous prouvons que l’une des identités parmi les objets Coxeter-Catalan conjec-
turés par Chapoton continue à tenir dans ce cadre, et nous conjecturer que les autres
identités tiennent aussi.
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1 Introduction

The associahedron is a simple polytope whose faces correspond to partial triangulations
of a convex polygon. Many geometric realizations of this polytope are known, each of
which gives some unique insights in Catalan combinatorics. One family of realizations
developed by Chapoton, Fomin, and Zelevinsky [11] and generalized by Hohlweg and
Lange [14] is related to the structure of the associahedron as a cluster complex for a type
A cluster algebra. Given this connection, Fomin and Zelevinsky [12] introduced gener-
alized associahedra as polytopes whose boundary complex is combinatorially isomorphic
to a cluster complex of finite type. The clusters of a finite type cluster algebra are one
of several significant classes of combinatorial objects enumerated by the Coxeter-Catalan
numbers, along with nonnesting partitions and noncrossing partitions which are recalled
in Section 2.

In [8] and [9], Chapoton conjectured some remarkable enumerative coincidences
among several Coxeter-Catalan objects, which were proved and extended in [1, 2, 15,
23, 24]. To compactly present these conjectures, he introduced three polynomials in two
variables known as the F-triangle, H-triangle, and M-triangle, defined in Section 2. These
polynomials encode enumerative data corresponding to the cluster complex, nonnest-
ing partitions, and noncrossing partitions, respectively. Chapoton conjectured that these
three triangles are equal after a particular substitution of variables. We will refer to this
conjecture/theorem as the F = H = M conjecture.

In [10], Chapoton defined the F-triangle and H-triangle outside the context of clus-
ter algebras for a complex of quadrangulations of a polygon. This complex of partial
quadrangulations was introduced by Baryshnikov [4]. It is a polytopal subcomplex of
the complex of all quadrangulations, for which the polynomials had been previously
defined by Armstrong [1, Section 5.3]. Surprisingly, the same relationship between the
F-triangle and H-triangle seems to hold as in the Coxeter-Catalan setting, which sug-
gests that there is a wider setting for these polynomials. Using the lattice of noncrossing
tree partitions defined in [13], one can also define an M-triangle as well.

In this work, we consider the F = H = M conjecture in a new setting. Our F-
triangle is defined in terms of the faces of the nonkissing complex introduced by Pe-
tersen, Pylyavskyy, and Speyer [18] and further studied by Santos, Stump, and Welker
[21]. The nonkissing complex ∆NK(λ) is a simplicial complex on some paths along the
edges of a Young diagram λ. We leave the details of its construction to Section 3. When
λ is a rectangle, this complex may be realized as a regular, unimodular, Gorenstein tri-
angulation of the order polytope on a product of two chains. As a result, it determines a
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monomial basis for the coordinate ring of the complex Grassmannian, which is distinct
from the standard basis. More information on the connection with commutative algebra
may be found in [18] and [21].

After removing cone points, the complex ∆NK(λ) is a polytopal sphere, which is
equivalent to the usual associahedron complex when λ is a rectangle with 2 rows.
Because of the connection to the Grassmannian, this polytopal sphere was named the
Grassmann-associahedron in [21] when λ is a rectangle. For an arbitrary shape, we refer
to a polytopal realization of this complex as the grid associahedron. More precisely a grid
associahedron is a simple polytope whose facets correspond to boundary paths in λ and
vertices correspond to facets of ∆NK(λ). A combinatorial construction of this polytope
by a sequence of ridge truncations starting from the cube is given in [17, Section 4].

In Section 5, we give a fan realization of the grid associahedron, from which one
may define the F-triangle, H-triangle, and M-triangle. Restricting to the associahedron
case, we recover the usual formulas for the three triangles. Our main result is to prove
the F = H identity (Theorem 6.1) for grid associahedra. We conjecture that the F = M
identity in (2.1) holds as well.

The facets of the nonkissing complex admit a natural partial order called the Grid-
Tamari order, which we recall in Section 4. The Grid-Tamari order is a lattice with some
additional structure [17]. One may also define the H-triangle and M-triangle using this
extra lattice structure using the canonical join complex and the lattice-theoretic shard
intersection order.

We speculate that the F = H = M identities may exist for a much larger class of
simplicial fans than those previously considered. We hope that this work will give some
insight into determining which fans admit these identities.

All of the results in this work are stated here without proof. Proofs will appear in the
full version.

2 Coxeter-Catalan triangles

In this section, we briefly recall some combinatorial structures that arise in Coxeter-
Catalan combinatorics. A thorough account on the development of this subject may be
found in [1, Chapter 1].

Given a rank r Coxeter system (W, S), the facets of the cluster complex, nonnesting
partitions, and noncrossing partitions are each enumerated by W-Catalan numbers,

Cat(W) =
r

∏
i=1

h + di

di

where h is the Coxeter number and d1, . . . , dr are the degrees of the fundamental invari-
ants in C[x1, . . . , xr]W . Each of these objects were originally defined and studied in type
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A before being extended to other types. We define each of these objects in turn, and
describe some additional enumerative relationships among them.

Let W be a finite real reflection group with root system Φ and simple roots Π. A root
is almost positive if it is either positive or the negation of a simple root. The set Φ≥−1 of
almost positive roots is the ground set of a flag simplicial complex ∆(W) known as the
(root) cluster complex. The faces of ∆(W) are collections of pairwise compatible almost
positive roots, as defined in [12]. If W is of type An−1, then the cluster complex is
isomorphic to the boundary complex of the (dual) associahedron.

The F-triangle [8] is the polynomial

F(x, y) = ∑
F∈∆(W)

x|F∩Φ+|y|F∩(−Π)|.

The usual f -polynomial of the cluster complex is equal to F(t, t).
For a crystallographic root system Φ, the root poset is defined as the poset (Φ+,≤) of

positive roots where α ≤ β if β− α is a nonnegative linear combination of simple roots.
Postnikov defined the set NN(W) of nonnesting partitions of W to be the antichains of the
root poset. Nonnesting partitions may be used to define the H-triangle [9],

H(x, y) = ∑
A∈NN(W)

x|A|y|A∩Π|.

We remark that H(t, 1) is the usual h-polynomial of the cluster complex, which im-
plies

H(t + 1, 1) = trF(1/t, 1/t),

where r is the rank of W. A finer relation is given in (2.1).
Noncrossing partitions were introduced by Kreweras [16] as partitions of a finite

subset of {1, . . . , n} arranged in clockwise order on a circle such that the convex hulls of
any two blocks do not intersect. This was generalized to all types separately by Bessis
[5] and Brady and Watt [7] as follows.

A Coxeter element c is the product of each simple generator, taken in any order. To
each root α in Φ, we may associate a reflection that fixes a hyperplane and swaps α and
−α. For w ∈ W, we let lT(w) be the length of the shortest expression for w as a product
of reflections. Coxeter elements are maximal in the absolute order, the poset on W where
u ≤ v if lT(u) + lT(u−1v) = lT(v). The noncrossing partitions NC(W, c) are all elements of
W in the interval [1, c] in absolute order. To recover the original definition by Kreweras,
we let c be the long cycle (12 . . . n), and replace an element u ∈ [1, c] with the set of
cycles that appear in the cycle decomposition of u.

The poset of noncrossing partitions is graded by the length function lT. This allows
one to define the M-triangle [8] as the polynomial

∑
u≤v

µ(u, v)xrk(v)yrk(u),
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where µ(u, v) is the Möbius function. The identities conjectured by Chapoton [8, 9] are
as follows.

H(x + 1, y + 1) = xrF
(

1
x

,
1 + (x + 1)y

x

)
= (1 + (x + 1)y)r M

(
(x + 1)y

(x + 1)y + 1
,

y + 1
y

)
(2.1)

Athanasiadis proved the F = M identity [2] by calculating the Möbius function in
terms of faces of the cluster complex and by identifying the h-polynomial of the cluster
complex with the rank generating function of the noncrossing partition lattice. Thiel
proved the F = H identity [23] in a generalized form due to Armstrong [1] by com-
paring derivatives of each side and using the previously mentioned formula for the
h-polynomial of the cluster complex.

3 Nonkissing complexes

In this section, we define the nonkissing complex, and recall some results from [17]
concerning its structure.

Let λ be a finite induced subgraph of the integer lattice. We say a point (a, b) is west
or south of (c, d) if a < c or b < d, respectively. North and east are defined similarly.
A vertex is an interior point if all of its four neighbors are in λ. Vertices in λ not in the
interior are called boundary vertices. We let Vo be the set of interior vertices and V be the
set of all vertices of λ.

A boundary path is a sequence of vertices (v0, . . . , vl), l > 0 such that

• v0 and vl are boundary vertices,

• vi is an interior vertex for 0 < i < l, and

• vi is one step south or east of vi−1 for 0 < i ≤ l.

For the most part, we simply use the word path to refer to a boundary path if it causes
no confusion. A segment is a sequence of interior vertices (v0, . . . , vl), l ≥ 0 such that vi
is immediately south or east of vi−1 for all i. We refer to this kind of path as a segment
since it is a part of a boundary path. We say a segment is lazy if it only contains one
vertex.

Boundary paths p and q are kissing along a segment s if

• both paths contain s,

• p enters s from the west while q enters from the north, and

• p leaves s to the south while q leaves to the east.
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We remark that two paths may kiss along several disjoint segments. If they do not kiss
along any segment, we say that p and q are nonkissing.

For a simplicial complex ∆, the maximal faces are called facets. A complex is pure if all
of its facets have the same size. If ∆ is pure, then the codimension 1 faces are called ridges.
The nonkissing complex ∆NK(λ) is the simplicial complex on boundary paths supported
by λ whose faces consist of pairwise nonkissing paths. If p only takes east steps or
only takes south steps, we say it is a horizontal or vertical path, respectively. Horizontal
and vertical paths are nonkissing with every other path, so they are cone points in the
nonkissing complex. The reduced nonkissing complex ∆̃NK(λ) is the subcomplex of ∆NK(λ)
with all horizontal and vertical paths removed. The reduced nonkissing complex is pure
of dimension |Vo| − 1. Furthermore, it is thin, which means that every ridge is contained
in exactly two facets [17, Corollary 3.3].

The reduced nonkissing complex has a facet such that each path consists of a se-
quence of east steps followed by a sequence of south steps, terminating at the boundary.
We will refer to this facet as F0. With this setup, we may define the F-triangle for the
nonkissing complex as

F(x, y) = ∑
F∈∆NK

x|F\F0|y|F∩F0|. (3.1)

We remark that if the graph λ is a disjoint union of subgraphs λ = λ1 t λ2, then the
nonkissing complex for λ is equal to the join of ∆NK(λ1) with ∆NK(λ2). Hence, we may
assume that λ is a connected graph. We are most interested in the case where λ is a
rectangle.

If λ is a 2× (n − 2) rectangle, then the boundary paths in λ that change direction
at least once are in bijection with diagonals of a polygon with n vertices. Under this
bijection, two paths kiss exactly when their corresponding diagonals cross. Hence, the
nonkissing complex ∆NK(λ) is isomorphic to the (dual) associahedron in this case. The
distinguished facet F0 corresponds to a triangulation where all diagonals are incident to
a common vertex.

If λ is a d× (n− d) rectangle shape, then we may identify boundary paths supported
by λ with the d-element subsets of {1, . . . , n} (except for {1, . . . , d} and {n− d+ 1, . . . , n})
by recording the south steps that the path takes. For example, if λ is the 3× 3 rectan-
gle with corners (0, 0), (0, 3), (3, 3), (3, 0), we may identify the subset {1, 2, 4} with the
boundary path ((0, 1), (1, 1), (1, 0)). The number of facets of ∆NK(λ) is the multidimen-
sional Catalan number

(d(n− d))!
d

∏
i=1

(i− 1)!
(n− i)!

,

which is equal to the number of standard Young tableaux of shape d× (n− d). This was
proved by Santos, Stump, and Welker by realizing ∆NK(λ) as a unimodular triangulation
of a polytope. This polytope admits a different unimodular triangulation whose facets
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are indexed by standard Young tableaux of rectangular shape. No bijective proof is
known; see [21, Open Problem 2.22] for some desirable properties such a bijection would
have.

4 Grid-Tamari order

The facets of the nonkissing complex form a graph where two facets are adjacent if they
intersect in a ridge. We orient this graph F s→ F′ if F \ F′ = {p}, F′ \ F = {q}, and the
paths p, q kiss along the segment s such that q enters s from the north and p enters s from
the west. Figure 1 shows this graph on the 42 facets of the nonkissing complex when λ

is a 3× 3 shape, where all edges are directed upwards. An example facet of ∆̃NK(λ) is
shown to the right of this graph.

Given a facet F, let D(F) be the set of segments s such that there exists F′ s→ F.

Proposition 4.1. The set {D(F) : F is a facet of ∆NK} is the set of faces of a flag simplicial
complex on segments.

We let Γ(λ) be the simplicial complex of Proposition 4.1. The compatibility relation
between segments that defines Γ is very similar to the nonkissing condition on boundary
paths. The only differences occur at the endpoints of the segments.

Given a set of segments G, a lazy segment s ∈ G is isolated if no other segment in G
contains s. For G ∈ Γ, let ε(G) be the number of isolated lazy segments, and define the
H-triangle as

H(x, y) = ∑
G∈Γ

x|G|yε(G). (4.1)

The complex Γ may seem somewhat arbitrary. In particular, if λ is a 2× n rectan-
gle, the faces of Γ(λ) do not correspond directly to type An−1 nonnesting partitions.
However, there is a simple bijection to type An−1 nonnesting partitions in this case that
preserves the H-triangle as follows. Label the interior vertices 1, 2, . . . , n − 1. To each
G ∈ Γ, there is a unique nonnesting partition on 1, . . . , n such that for each arc (i, j)
there is a segment that starts at i and a segment that ends at j− 1, and vice versa. The
definition of Γ was motivated by a lattice-theoretic construction, described below.

The directed graph on facets of ∆NK is acyclic, so it defines a poset where F ≤ F′

if there exists a directed path F → · · · → F′. This poset is known as the Grid-Tamari
order, as it is equivalent to the usual Tamari order when λ is a 2× (n− 2) rectangle. The
acyclicity of the graph is not obvious. In [17], the directed graph was shown to be acyclic
by identifying it with the Hasse diagram of a lattice. Furthermore, the Grid-Tamari order
was shown to carry the additional structure of a semidistributive lattice.



8 Thomas McConville

Figure 1: Grid-Tamari order where λ is a 3× 3 rectangle

Semidistributivity is some weakening of distributivity. In a distributive lattice, every
element x has a unique irredundant expression x =

∨
j∈A j as the join of some subset

A of join-irreducible elements. In a semidistributive lattice, there may be several such
irredundant join-representations of an element, but there is a unique minimal represen-
tation called the canonical join-representation. Here, we compare two join-representations
x =

∨
j∈A j =

∨
j∈B j by setting A ≤ B if for all j ∈ A, there exists j′ ∈ B with j ≤ j′.

The canonical join complex is the collection of subsets A of join-irreducibles such that∨
A is a canonical join-representation of some element. As the name implies, this com-

plex is an abstract simplicial complex, which was proved to be flag for any semidis-
tributive lattice by Barnard [3]. For the Grid-Tamari order, the canonical join complex is
isomorphic to the complex Γ(λ) from Proposition 4.1.

5 Fan realization of grid associahedra

To present the analogue of noncrossing partitions, we realize the nonkissing complex as
the face poset of a complete simplicial fan. The ridges of this fan may be grouped to-
gether into larger codimension 1 cones called shards. We define the noncrossing partitions
as the set of intersections of shards. This approach to noncrossing partitions for finite
Coxeter systems was previously done by Reading and Speyer using Cambrian fans [20].

Let Vo be the set of interior vertices of a shape λ. For a boundary path p, let gp be
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the vector in RVo
such that for v ∈ Vo,

gp(v) =


1 if p enters v from the north and leaves to the east,
−1 if p enters v from the west and leaves to the south,
0 otherwise.

Given a face F in ∆̃NK(λ), let C(F) be the cone generated by {gp : p ∈ F}.

Theorem 5.1. The set of cones {C(F) : F ∈ ∆̃NK(λ)} is a complete simplicial fan such that
C(F) ∩ C(F′) = C(F ∩ F′) for any two faces F, F′. That is, the incidence relation on cones
matches the inclusion relation on faces on the nonkissing complex.

We refer to this fan as Fλ. The rays of Fλ correspond to boundary paths. We claim
that the ridges match up with segments in a natural way. For a vertex v ∈ Vo, let αv be
the linear functional where αv(v) = 1 and αv(u) = 0 if u ∈ Vo \ {v}. For each segment
s ∈ S, let αs ∈ V∗ be the linear functional αs = ∑v∈s αv.

Using the labeling on paths in [17, Theorem 3.2], one may show that if F, F′ are facets
such that F s→ F′, then αs(x) = 0 for x ∈ C(F ∩ F′) and αs(x) ≥ 0 for x ∈ C(F′). Hence,
the fan Fλ contains the Grid-Tamari order as an ordering of its maximal cones where C′

covers C if C ∩ C′ is a ridge and C′ is on the “positive” side of C ∩ C′. The collection of
segments D(F) from Section 4 may be interpreted as the lower walls of the facet F.

Given a ridge R, let [R] be the union of ridges supported by the same hyperplane as
R. We claim that [R] is a (codimension 1) cone. Roughly speaking, this means that ridges
supported by the same hyperplane may be found close together. Since each ridge is in
the kernel of some αs, we obtain a bijection between cones of the form [R] and segments
supported by λ. Following the language of [19, Section 8], we refer to the cones [R] as
shards.

LetW be the set of shards of Fλ, and let Ψ be the set of cones that may be expressed
as the intersection of a subset of W . The set Ψ ordered by reverse inclusion is called the
shard intersection order. This poset is a lattice that is graded by codimension.

We remark that our construction of the shard intersection order differs somewhat
from the usual method, as in [20]. In that work, Reading and Speyer start with the
reflection arrangement of a finite Coxeter system and divide each hyperplane into cones
called shards. Many of these shards are then removed, revealing a coarser fan known
as a Cambrian fan. The shard intersection order is defined as the intersections of shards
that were not deleted by this coarsening process. Their technique relies on the fact that
the poset of regions (see e.g., [6]) of a reflection arrangement is a lattice. However, the
arrangement of hyperplanes Aλ that support ridges of Fλ does not have a lattice of
regions whenever λ contains a 3× 3 square. Fortunately, we may describe the fan Fλ

directly without starting from Aλ.
For a facet F, let ψ(F) = ∩R∈D(F)[R] be an element of Ψ.
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Theorem 5.2. The map ψ is a bijection from facets of ∆NK to the shard intersection order Ψ. The
inverse ψ−1 is order-preserving.

Using Ψ, we may define the M-triangle as

M(x, y) = ∑
C,D∈Ψ
C≤D

µ(C, D)xrk(D)yrk(C). (5.1)

6 Enumerative coincidences

For a fixed shape λ, we defined the F-triangle, H-triangle, and M-triangle in terms of the
nonkissing complex ∆NK(λ) (3.1), the canonical join complex Γ(λ) (4.1), and the shard
intersection order Ψ(λ) (5.1). We conjecture that the identities in (2.1) still hold for these
triangles. For now, we only claim the F = H identity.

Theorem 6.1. The following identity holds.

H(x + 1, y + 1) = xrF
(

1
x

,
1 + y(x + 1)

x

)
To prove Theorem 6.1, we first define matrices ( fij)

r
i,j=0 and (hij)

r
i,j=0 where

hij = |{F ∈ Γ : |F| = j, ε(F) = i}|, and

fij = |{F ∈ ∆NK : |F| = j, |F ∩ F0| = i}|.

In the full version of this work, we prove that the f -matrix is equal to the h-matrix
times an upper triangular matrix (tij)

r
i,j=0 where tij = (r−i

j−i) if i ≤ j. Using this identity,
Theorem 6.1 reduces to a symmetry of the H-triangle, which we prove using an analogue
of Kreweras complementation for semidistributive lattices.

We have confirmed the F = H = M conjecture for many small shapes using Sage [22].
For example, if λ is a 3× 3 rectangle, the three triangles are the following polynomials.

F(x, y) = 1 + 10x + 4y + 28x2 + 22xy + 6y2 + 30x3 + 34x2y + 16xy2 + 4y3 + 11x4

+ 16x3y + 10x2y2 + 4xy3 + y4

H(x, y) = 1 + 6x + 4x2 + 4xy + 10x2y + 2x3y + 6x2y2 + 4x3y2 + 4x3y3 + x4y4

M(x, y) = 1− 10x + 28x2 + 10xy− 30x3 − 48x2y + 11x4 + 68x3y + 20x2y2 − 30x4y

− 48x3y2 + 28x4y2 + 10x3y3 − 10x4y3 + x4y4
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